Cardiomyocyte degeneration with calpain deficiency reveals a critical role in protein homeostasis.
نویسندگان
چکیده
Regulating the balance between synthesis and proteasomal degradation of cellular proteins is essential for tissue growth and maintenance, but the critical pathways regulating protein ubiquitination and degradation are incompletely defined. Although participation of calpain calcium-activated proteases in post-necrotic myocardial autolysis is well characterized, their importance in homeostatic turnover of normal cardiac tissue is controversial. Hence, we evaluated the consequences of physiologic calpain (calcium-activated protease) activity in cultured cardiomyocytes and unstressed mouse hearts. Comparison of in vitro proteolytic activities of cardiac-expressed calpains 1 and 2 revealed calpain 1, but not calpain 2, activity at physiological calcium concentrations. Physiological calpain 1 activation was evident in adenoviral transfected cultured cardiomyocytes as proteolysis of specific substrates, generally increased protein ubiquitination, and accelerated protein turnover, that were each inhibited by coexpression of the inhibitor protein calpastatin. Conditional forced expression of calpain 1, but not calpain 2, in mouse hearts demonstrated substrate-specific proteolytic activity under basal conditions, with hyperubiquitination of cardiac proteins and increased 26S proteasome activity. Loss of myocardial calpain activity by forced expression of calpastatin diminished ubiquitination of 1 or more specific myocardial proteins, without affecting overall ubiquitination or proteasome activity, and resulted in a progressive dilated cardiomyopathy characterized by accumulation of intracellular protein aggregates, formation of autophagosomes, and degeneration of sarcomeres. Thus, calpain 1 is upstream of, and necessary for, ubiquitination and proteasomal degradation of a subset of myocardial proteins whose abnormal accumulation produces autophagosomes and degeneration of cardiomyocytes with functional decompensation.
منابع مشابه
Cardiomyocyte Degeneration With Calpain Deficiency Reveals a Critical Role in Protein
Regulating the balance between synthesis and proteasomal degradation of cellular proteins is essential for tissue growth and maintenance, but the critical pathways regulating protein ubiquitination and degradation are incompletely defined. Although participation of calpain calcium-activated proteases in post–necrotic myocardial autolysis is well characterized, their importance in homeostatic tu...
متن کاملCardiomyocyte-specific conditional knockout of the histone chaperone HIRA in mice results in hypertrophy, sarcolemmal damage and focal replacement fibrosis
HIRA is the histone chaperone responsible for replication-independent incorporation of histone variant H3.3 within gene bodies and regulatory regions of actively transcribed genes, and within the bivalent promoter regions of developmentally regulated genes. The HIRA gene lies within the 22q11.2 deletion syndrome critical region; individuals with this syndrome have multiple congenital heart defe...
متن کاملAn essential cell-autonomous role for hepcidin in cardiac iron homeostasis
Hepcidin is the master regulator of systemic iron homeostasis. Derived primarily from the liver, it inhibits the iron exporter ferroportin in the gut and spleen, the sites of iron absorption and recycling respectively. Recently, we demonstrated that ferroportin is also found in cardiomyocytes, and that its cardiac-specific deletion leads to fatal cardiac iron overload. Hepcidin is also expresse...
متن کاملInterplay of Phosphorylated Apoptosis Repressor with CARD, Casein Kinase-2 and Reactive Oxygen Species in Regulating Endothelin-1–Induced Cardiomyocyte Hypertrophy
Objective(s): The role of the Apoptosis repressor with caspase recruitment domain (ARC) in apoptosis and in certain hypertrophic responses has been previously investigated, but its regulation of Endothelin-1 induced cardiac hypertrophy remains unknown. The present study discusses the inhibitory role of ARC against endothelin–induced hypertrophy. Results:In present study Endothelin treated car...
متن کاملCRTH2 promotes endoplasmic reticulum stress‐induced cardiomyocyte apoptosis through m‐calpain
Apoptotic death of cardiac myocytes is associated with ischemic heart disease and chemotherapy-induced cardiomyopathy. Chemoattractant receptor-homologous molecule expressed on T helper type 2 cells (CRTH2) is highly expressed in the heart. However, its specific role in ischemic cardiomyopathy is not fully understood. Here, we demonstrated that CRTH2 disruption markedly improved cardiac recover...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 100 7 شماره
صفحات -
تاریخ انتشار 2007